skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Emami, Anahita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite the growing interest in flexible electronics and wearable sensors, research in piezoresistive polymer nanocomposites has stagnated in consideration of the polymer matrices, particularly in additive manufacturing (AM) applications. This research focuses on using a low‐molecular isoprene rubber (IR) as a matrix filled with carbonaceous nanoparticles conductive carbon black (CCB) and carbon nanotubes (CNT) to create piezoresistive sensors printed via direct ink writing (DIW). Using IR as a matrix not only provides an avenue for an alternate sensor matrix, but also offers a distinct advantage for retrofit sensor applications to other diene rubber substrates due to both the feedstock and substrate possessing the same vulcanization mechanism. Thereby, the rheological, mechanical, and piezoresistive properties of the IR nanocomposites are fully investigated, with emphasis on non‐ambient conditions (temperature and durability). In this work it is shown that while CCB exhibits a lower gauge factor (between 1.5 and 8) across all strain rates, strain ranges, and temperatures when compared to CNT compounds (gauge factors between 1.5 and 260), CCB compounds possess better linearity, less temperature deviation, and overall better performance under cyclic loading conditions. This is followed by demonstrations for real‐world applications, including the direct‐to‐product printing of a CCB strain gauge on a chloroprene rubber substrate. HighlightsAM via DIW of piezoresistive isoprene sensors filled with conductive CB and multi‐wall carbon nanotubes.Printed samples capable of achieving tensile strength >3.5 MPa.CB sensors showed less sensitivity, but better durability and repeatability compared to carbon nanotube filled sensors.Piezoresistive isoprene strain gauge printed on chloroprene substrate with direct adhesion. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  2. Piezoresistive structures inspired by serpentines, auxetic, and kirigami arrangements have demonstrated good flexibility and sensitivity under tension. Piezoresistive structures display optimal performance when the characteristics entail reliable stretchability and repeatability. These structures can be implemented as wearable sensors by compressing and elongating the conductive nanocomposites to vary the flow of electrons and to provide resistance change. To guarantee the reliability of these structures for strain sensing, it is important that the resistance change in these structures remains constant under repeated loads. In this study, the performance of different piezoresistive structures under cyclic tensile load is investigated and compared. Based on the performance of different types of structures, novel hybrid structures have been also proposed to design for both high stretchability and sensitivity of piezoresistive sensors. All the structures were tested with position limits rather than a fixed force to avoid permanent deformation. First, small position limits were used to determine Young’s Modulus, then a 10-cycle tensile test with larger position limits was used to further study the electromechanical behavior of different piezoresistive structures under larger deformation and repetition. Finally, the gage factor was derived for all the studied structures, and they were re-categorized based on properties’ similarities. 
    more » « less